
Chimera: Transparent and High-Performance ISAX
Heterogeneous Computing via Binary Rewriting

Jiatai He1,2, Qinglin Pan1,2, Ruilin Zhao1,2, Ji Qi1,3∗, Kaiwen Liang6,1,4,5, Jiahao Xu1,2, Zhiyuan Li2,1,4,5,
Yuexiang Wang1, Jiageng Yu1, Yanjun Wu1

1Institute of Software Chinese Academy of Sciences 2University of Chinese Academy of Sciences 3Key Laboratory of
System Software (Chinese Academy of Sciences) 4University of Chinese Academy of Sciences, Nanjing 5Nanjing

Institute of Software Technology 6Hohai University

Abstract
ISAX heterogeneous processors integrate cores that share
a common base ISA, with certain cores offering extension
ISAs (e.g., vector extension) to accelerate computation. ISAX
balances performance and energy efficiency while facilitat-
ing the reuse of existing software ecosystems. RISC-V, which
adopts the ISAX architecture, has gained extensive attention
in both industry and academia. Binary translation via binary
rewriting enables transparent ISAX heterogeneous comput-
ing by translating extension instructions when migrating a
program to cores without extension support. However, cur-
rent binary rewriting methods still struggle to achieve both
high performance and correctness.
We propose Chimera, an ISAX heterogeneous comput-

ing system via binary rewriting that achieves both correct-
ness and high performance. Prior binary rewriting meth-
ods ensure correctness by proactive fault checking, incur-
ring unnecessary runtime overhead in normal executions
unlikely to encounter faults. Chimera introduces a new bi-
nary rewriting method that passively triggers fault-handling
only when faults actually occur, minimizing runtime over-
head. We evaluated Chimera and notable ISAX heteroge-
neous computing systems using real-world workloads. In
mixed matrix computational workloads, Chimera achieved
only 3.2% performance overhead compared to native com-
pilation, and only 5.3% in real-world workloads like Open-
BLAS. On SPEC CPU2017 benchmarks, our method achieved
up to 42.5% performance improvement over existing binary
rewriting methods on average. Chimera ’s code is released
on https://github.com/Eurosys26p57/Chimera.

CCS Concepts: • Computer systems organization →
Heterogeneous (hybrid) systems.

*Ji Qi (qiji@iscas.ac.cn) is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2212-7/26/04
https://doi.org/10.1145/3767295.3769323

Keywords: Heterogeneous computing, binary rewriting, op-
erating system

ACM Reference Format:
Jiatai He1,2, Qinglin Pan1,2, Ruilin Zhao1,2, Ji Qi1,3∗, Kaiwen
Liang6,1,4,5, Jiahao Xu1,2, Zhiyuan Li2,1,4,5, Yuexiang Wang1, Jia-
geng Yu1, Yanjun Wu1. 2026. Chimera: Transparent and High-
Performance ISAX Heterogeneous Computing via Binary Rewrit-
ing. In 21st European Conference on Computer Systems (EUROSYS
’26), April 27–30, 2026, Edinburgh, Scotland Uk. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3767295.3769323

1 Introduction
As the open-source and modular ISA (Instruction Set Archi-
tecture) RISC-V [4, 7, 48] has seen increasing adoption in
both industry and academia, ISAX (ISA eXtension) hetero-
geneity has gained significant popularity. ISAX heterogene-
ity is based on heterogeneous processors with the overlap-
ping ISA: each core supports the same base ISA and can cus-
tomize different extension ISAs for computation acceleration.
The overlapping-ISA heterogeneity offers unique

strengths over single-ISA and disjoint-ISA heterogene-
ity. Compared to single-ISA heterogeneity (e.g., ARM
big.LITTLE [44]), ISAX heterogeneity allows each core or
processor to support instructions optimized for specificwork-
loads, enabling a better performance-energy balance [16, 61–
63]. Compared to disjoint-ISA heterogeneity, ISAX hetero-
geneity simplifies software porting. Porting software to
disjoint-ISA heterogeneous processors requires developers to
manage complex differences in application binary interfaces
(ABIs) [18, 19, 22, 25, 55]. For instance, the notable disjoint-
ISA heterogeneous computing system, Popcorn [19], requires
implementing a new system infrastructure for communica-
tion between OS kernels for different ISAs, as well as specific
support for compilation toolchains. In contrast, ISAX hetero-
geneous processors share a common ABI through their com-
mon base ISA [53], eliminating the need for extensive sys-
tem modifications, and thus enhancing software portability.

Binary translation through static binary rewriting is espe-
cially suitable for ISAX heterogeneous computing. By trans-
lating source instructions into architecture-specific target in-
structions before execution, binary rewriting produces rewrit-
ten binaries, eliminating the interpretation or JIT overhead
that plagues dynamic translators.

https://github.com/Eurosys26p57/Chimera
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3767295.3769323
https://doi.org/10.1145/3767295.3769323

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jiatai et al.

Trampoline

Trampoline

Ext. Inst.

Trans. Inst.

0x0

0x10

0x14

0x30

0xC

Original Binary

(a)

Binary

Regeneration

(b)

Binary

Patching

(c)

0x0 0x0

Trans. Inst.

0x10

0x1C

0x38

Trampoline

Trans. Inst.

0x10

0x14

0x30

0x3C

Orig. Inst.

Orig. Inst.

Orig. Inst.

Orig. Inst. Orig. Inst.

Orig. Inst.

Control Flow

Figure 1. (a)When translating a source instruction to target
instructions, binary regeneration (b) overwrites the source
with target instructions by shifting subsequent instructions
(0x1C~0x38); binary patching (c) replaces the source with a
single-inst trampoline pointing target instructions.

Binary rewriting offers both transparency and high per-
formance for ISAX systems. First, extension instructions ac-
celerate computations by batching the operations of base
instructions [4, 8] and take only a tiny portion (5%∼10%) of
all instructions in binaries (§2); translating this small sub-
set into equivalent base sequences is therefore lightweight
and preserves near-native speed, allowing tasks to migrate
seamlessly across heterogeneous cores. Second, the original
application binary, ABI, and toolchain remain unchanged,
and no source-code modifications are required, avoiding the
cumbersome dependency-resolving and re-build overhead
inherent in compilation methods [60].

ISAX heterogeneous computing requires binary rewriting
to achieve correctness and high performance. For cor-
rectness, the rewritten binary must preserve the original bi-
nary’s semantics after any upgrading (optimize base instruc-
tions to corresponding extension instructions) or downgrad-
ing (translate extension instructions to corresponding base
instructions). For high performance, rewritten binaries must
run efficiently without heavy performance overhead (§3.2).
While ensuring correctness, existing binary rewriting

methods fail to achieve high performance [20, 26, 28, 49]. In
Figure 1a, downgrading an extension instruction often re-
quires replacing it with multiple translated instructions, re-
quiring shifting subsequent instructions for enough space.
However, since binaries’ control flows are tightly coupled
with fixed instruction addresses at compile time (e.g., many
jump targets are prearranged), such shifting corrupts the se-
mantics of the original binary (e.g., jump to an unintended
instruction, causing erroneous jumps). The same problem
also exists in upgrading. To preserve the original binary’s se-
mantics, two methods exist: binary regeneration and binary
patching, both incurring high runtime overhead.

Binary regeneration [20, 49] ensures correctness through
runtime checking, causing performance degradation. The
method translates source instructions in place and corrects

erroneous jump targets caused by instruction shifting. How-
ever, except for special cases with only static jump targets
(e.g., binaries in safety-critical/hard real-time systems [35,
56]), statically correcting all jump targets is impossible, as
some can only be identified at runtime [31, 65]. Although
existing approaches exploit compiler metadata to increase
the number of recoverable targets, they still cannot guaran-
tee complete recovery [27, 65]. For a jump with unidentified
targets, the method performs runtime checks each time the
jump is executed to detect and correct erroneous jump tar-
gets, resulting in 30-40% performance degradation [20].

Binary patching [26] replaces a source instruction with a
single-inst trampoline targeting translated instructions (Fig-
ure 1c) without shifting the subsequent instructions, but in-
troduces heavy, trap-based trampolines. Due to ISA encod-
ing constraints, a jump instruction has limited bits to en-
code its target address, leading to a constrained jump range
(e.g., ±1MB in RISC-V). In a large binary such as the OpenCV
Graph API compiled with the vector extension, about 70%
of target instructions cannot be reached by a single jump in-
struction. RISC architectures do support long-distance tram-
polines. In RISC-V, for example, the multiple-inst long tram-
poline uses auipc to load the jump target and jalr to perform
the jump (Figure 2a). However, since the vanilla trampoline
contains two instructions, if control flow jumps to the second
instruction, the target address, which is not correctly set by
the preceding auipc, will cause an unintended jump and break
correctness. Therefore, existing works propose trap-based
trampolines that rely on runtimemechanisms to redirect con-
trol flow, causing up to 50% performance degradation (§2).
Overall, existing binary rewriting methods use runtime

mechanisms to ensure correctness, incurring high perfor-
mance overhead. We attribute this to their design philoso-
phy of proactively trading normal execution performance for
security against control-flow faults caused by potential erro-
neous jumps. For instance, binary regeneration inserts run-
time checks before indirect jumps in normal executions.

We observe that the root cause of this overhead lies in the
non-deterministic behavior resulting from erroneous jumps,
which forces the use of conservative fault-handling strate-
gies. An erroneous jump can lead to unpredictable program
behavior after executing several unintended instructions. To
reconcile correctness with high performance, our key insight
is that: if all potential erroneous jumps can be made to
trigger deterministic faults, then fault handling can
perform passively in only erroneous executions, with-
out impacting normal execution performance.
We propose Chimera, a novel ISAX heterogeneous com-

puting system via binary rewriting. The core of Chimera
is CHBP, a Correct and High-performance Binary Patching
method. CHBP leverages special registers in ABI (e.g., gp
register in RISC-V [4, 53]) to design a SMILE trampoline (Se-
cure Multiple-Instruction Long-distancE trampoline), ensur-
ing that erroneous executions always jump to an invalid ad-

Chimera : ISAX Heterogeneous Computing via Binary Rewriting EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

auipc jr

Source int. 1 Source int. 2
P1

Trampoline
Control flow

SMILE tramp.

Vanilla tramp.

P1

P1
auipc gp imm

Original inst.

jalr gp, gpauipc gp, imm

jalr rd, imm(rs)auipc rd imm

Source int. 1

 int. 1

SMILE tramp.

P1

P1
auipc gp imm

Compressed inst.

jalr gp, imm(gp)auipc gp, imm

 int. 2 int. 3 int. 4

P3P2

P2 P3

(a)

(b)

Det. fault
gp Specific reg.

Figure 2. (a) Design of our SMILE trampoline. (b) Design of
our SMILE trampoline for compressed instructions.

dress, such as the data segment, to raise deterministic faults.
As shown in Figure 2a, to avoid shifting subsequent in-

structions, Chimera replaces two adjacent instructions with
RISC-V’s vanilla trampoline to enable long-distance jumps.
However, the second trampoline instruction (jalr) becomes a
potential jump target (P1) to partially execute the trampoline.
To address this, our SMILE trampoline leverages the ABI-
specified special register, the gp register in RISC-V, to per-
form the jump. In normal execution, auipc correctly modifies
the gp’s value to the address of target instructions, allowing
jalr to jump to the correct location. In erroneous execution,
since the ABI ensures gp points to the data segment, execut-
ing only the jalr triggers a deterministic segmentation fault.

CHBP still faces two challenges. First, many ISAX proces-
sors, such as RISC-V processors with the compression ex-
tension [4, 52], support compressed instructions, introduc-
ing extra potential jump targets within our SMILE trampo-
line. An original binary with compressed instructions con-
tains both 2-byte and 4-byte instructions. If an 8-byte SMILE
trampoline is overwriting four 2-byte instructions, two extra
jump targets, P2 and P3, appear in the trampoline instruc-
tions (Figure 2b). Since P2 and P3 point to the middle of the
trampoline’s jump target address, we handle such erroneous
executions by carefully arranging SMILE trampolines’ jump
targets, ensuring that any attempt to execute from these tar-
gets triggers a deterministic illegal instruction fault.

The second challenge lies in selecting registers for trampo-
lines to jump back from target instructions to original instruc-
tions. In RISC architectures, long jumps are register-based
and require a dead register (whose value is not used by sub-
sequent instructions [46]) to hold the jump target. Although
gp can be used to jump to target instructions (§4.2), we need
another dead register to jump back after execution. Existing
methods use binary register liveness analysis to identify dead
registers, which can fail due to the limitations in binary data
flow analysis [31, 46] and high register pressure in compute-
intensive tasks. To find a dead register in most cases, we re-
duce the registers used by subsequent instructions by includ-
ing more subsequent instructions in the translated block.

We evaluated Chimerawith a state-of-the-art compilation-

Table 1. Comparison of Chimera and related works.
System Need Source Code Low Porting Effort Correctness High Perf.

SCHEDULING
FAM [39] No Yes Yes No

COMPILATION
MELF [60] Yes No Yes Yes

BINARY REGENERATION
Multiverse [20] No Yes Yes No

Safer [49] No Yes Yes No
Egalito [65] No Yes No Yes
SURI [36] No Yes No Yes
BinRec [12] No Yes No Yes

BINARY PATCHING
ARMore [26] No Yes Yes No
PIFER [50] No Yes Yes No

Chimera (ours) No Yes Yes Yes

based ISAX heterogeneous computing system MELF [60],
and evaluated CHBP with state-of-the-art binary rewriting
methods, including ARMore [26] and Safer [49]. Our evalua-
tion assesses the performance and correctness of Chimera
using several real-world applications widely used in previ-
ous works, including SPEC CPU2017 [2] and Vim, Git, etc.
Our evaluation results show that:
• Chimera achieved high performance in ISAX heteroge-
neous computing, incurring only 3.2% performance over-
head on average compared to MELF.

• CHBP achieved high performance in binary rewriting. The
rewritten binaries achieved up to 42.5% higher perfor-
mance than ARMore and Safer.

• CHBP achieved correctness via the passive fault handling,
incurring only 2.1% performance overhead on average.
Our main contribution is CHBP, a novel binary rewriting

method for ISAX heterogeneous computing that achieves
both correctness and high performance through passive fault
handling. Unlike prior works, the passive fault handling
avoids performance penalties on normal executions, thereby
achieving high performance. The innovations behind CHBP
apply to other research areas (e.g., binary hardening [27, 29,
59, 65], binary hot-patching [21, 34, 51], and fuzzing [66]),
which also require correct and efficient binary patching.

2 Background
We compared Chimera with related works in Table 1.

2.1 ISAX Heterogeneous Computing
Scheduling-based methods. A binary for an ISAX hetero-
geneous computing system often includes extension instruc-
tions not supported by all cores. Scheduling-based meth-
ods [39] address this via fault-and-migrate (FAM): when a
core encounters an unsupported instruction, it triggers an
illegal instruction fault, prompting the scheduler to migrate
execution to a compatible core. However, FAM cannot en-
sure every instruction has a compatible core, which limits
scheduling flexibility and under-utilizes hardware. Our eval-
uation shows that FAM introduces about 33.1% overhead in
end-to-end latency compared to other methods (§6.1).
Compilation-based methods. Prior works proposed
compiler-level support for ISAX heterogeneous comput-

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jiatai et al.

ing [16, 39, 61–63]. They compile functions into multiple
versions, allowing them to run on heterogeneous cores with
high performance [60]. However, they require the source
code. As ISAX processor extensions are increasingly diverse,
developers may not know all available extensions on target
machines. Thus, pre-compiling all possible ISA extensions
is impractical, especially for legacy or closed-source appli-
cations whose source code is unavailable. Compilation can
also be costly, for example, compiling SPEC CPU2017 costs
10 hours on Banana Pi BPI-F3 with a SpacemiT K1 8-core
RISC-V 1.6GHz CPU [17], while Chimera only costs 40 min-
utes. Additionally, compiling source code is often complex
and requires specific toolchains and compatible libraries.

Another feasible approach is to distribute applications in
an intermediate representation (IR) and compile the IR to bi-
naries on the target hardware, thereby reducing compilation
overhead. However, maintaining multiple hardware-vendor-
specific IR dialects (e.g., LLVM IR with different custom IR in-
trinsics [38]) and toolchains imposes substantial overhead on
software developers. Since no single IR dialect has achieved a
broad consensus [57], users must install a separate toolchain
for each vendor’s IR dialect, degrading the user experience,
especially for non-technical users. Additionally, since most
applications are distributed in binaries, providing them as IR
is largely incompatible with the existing software ecosystem.
Motivation 1. Binary rewriting is suitable for ISAX hetero-
geneous computing. As extension instructions (or base in-
structions that can be upgraded) constitute only a small por-
tion of binaries (about 3% in OpenCV [5]), most instructions
do not need rewriting. Consequently, the overhead induced
by trampolines is negligible (about 3.2% in Chimera, see §6.2).
Moreover, binary rewriting doesn’t require source code or
customized compilation toolchains, making it more practical
for ISAX heterogeneous computing with diverse extensions.

2.2 Binary Rewriting
Correctness of binary rewriting. The correctness of bi-
nary rewriting means that rewritten binaries should have
the same semantics as original ones. However, accurate con-
trol flow recovery (§1) is still an unsolved problem, espe-
cially accurately determining all potential targets of indirect
jumps involving pointers and jump tables [14, 37, 49, 64, 65].
Although many binary regeneration methods [14, 24, 31,

36, 37, 64, 65] use heuristics and binary metadata, like re-
location information (Egailtio [65]) or security metadata
(SURI [37]), to recover control flow, the correctness issue still
remains. A notable study BinRec [12] addresses this using
dynamic and incremental regeneration to recover erroneous
control flow when faults occur at runtime. However, BinRec
is unsuitable for heterogeneous computing as runtime faults
can cause unrecoverable side effects. In contrast, Chimera
only triggers deterministic faults free from side effects.
Performance of binary rewriting. For correctness, exist-
ing methods rely on runtime mechanisms but incur signifi-

cant performance degradation.
For binary regeneration, previous methods ensure correct-

ness by proactively checking and correcting the target of
each indirect jump in both erroneous and normal executions,
causing significant performance overhead. For instance, Mul-
tiverse [20] uses a lookup table to correct all indirect jumps
in rewritten binaries at runtime, causing above 30% perfor-
mance overhead. Safer [49] encodes indirect jump targets
that have been statically corrected and checks them at run-
time. Encoded targets can jump directly, while only unen-
coded targets require correction via a table, reducing the fre-
quency of table queries. However, it still struggles with com-
plex binaries, causing around 40% performance overhead in
the perlbench of SPEC CPU2017 (§6.2). Moreover, when an
encoded target is modified by an undetected control flow,
Safer can only detect the erroneous target but cannot cor-
rect it, and thus cannot ensure correctness.
For binary patching, to avoid multiple-inst long trampo-

lines to corrupt correctness, previous approaches [50] use
trap-based trampolines, introducing significant performance
overhead. ARMore [26] relocates all original instructions to
a new code section, where the source instructions are trans-
lated while others remain unchanged. In the original code
section, each instruction is replaced with a single-inst tram-
poline to maintain the mapping between original and relo-
cated instructions. Indirect jumps in the relocated code still
use original addresses as targets, which point to the corre-
sponding trampolines in the original section. These trampo-
lines then redirect control flow to the correct instructions in
the relocated section. ARMore achieves a low performance
overhead (about 1%) on ARM [1] binaries where a single
jump instruction reaches up to 128MB. However, it is imprac-
tical for the RISC-V architecture, whose jumping distance
of one jump instruction is only ±1MB, to reduce instruction
encoding types for power saving and improving hardware
extensibility [4]. For many applications (e.g., Vim [58] and
Git [33]) whose code sections are larger than 1MB, ARMore
must use trap-based trampolines to redirect control flows,
inducing unacceptable performance overhead (§6.2).
Motivation 2. Compared to prior binary rewriting meth-
ods, Chimera achieves both high performance and correct-
ness through passive fault handling. For high performance,
Chimera avoids the vast majority of heavy trap-based tram-
polines (98.97% avg., see §6.2) and proposes a novel multiple-
inst trampoline, which triggers deterministic faults in only er-
roneous executions. Chimera adopts a passive fault-handling
mechanism to recover these faults, ensuring correctness
without degrading the normal execution performance.

3 Overview
3.1 System Setup
The architecture of Chimera is shown in Figure 3. Chimera
targets the heterogeneous processor environment (Figure 3a),

Chimera : ISAX Heterogeneous Computing via Binary Rewriting EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

which consists of heterogeneous ISAX processors (proces-
sor 1 ∼ processor 3) and heterogeneous coreswithin a single
processor (processor 2). Given an original binary compiled
for a specific ISA (RISC-V in our experiments), Chimera first
converts it into rewritten binaries by static binary rewriting
(§4.1 and §4.2) and then guarantees execution correctness
and high performance on heterogeneous cores through run-
time mechanisms (§4.3).

3.2 Chimera’s Guarantee
An execution flow refers to the sequence of instructions exe-
cuted at runtime, including control transfers such as jumps,
branches, and calls. The semantics of a binary denotes the
intended behavior it exhibits. The “erroneous executions” are
the execution flows that corrupt the original binary’s seman-
tics after rewriting. As discussed in §1, binary regeneration
may cause erroneous execution flows, but the limitations in
binary analysis (§2.2) hinder complete correction. In contrast,
“normal executions” preserve the original binary’s semantics.

We categorize faults triggered by erroneous executions
into two types: “non-deterministic faults” and “deterministic
faults”. Non-deterministic faults may lead to unpredictable
program behaviors. For instance, a jump to an incorrect
target address can cause the program to execute unintended
instructions. Deterministic faults trigger specific faults that
immediately halt execution (e.g., illegal instruction faults).
Assertion 1 (Correctness of Chimera). Chimera guarantees
the correctness of all rewritten binaries by ensuring that any
erroneous execution triggers a deterministic fault, which is
detected and recovered at runtime.

Therefore, the rewritten binaries generated by Chimera
are consistent in semantics with the original binary and
maintain their correctness.

3.3 Analysis of Chimera’s Performance Guarantee
Assertion 2 (High Performance of Chimera). In normal exe-
cutions, Chimera’s fault-handling incurs only the overhead of
executing SMILE trampolines.

Prior binary rewriting methods correct all erroneous exe-
cutions by checking every control flow transfer (e.g., jumps),
inducing high costs in both normal and erroneous execu-
tions (e.g., Safer, see §2.2). Chimera captures erroneous exe-
cutions passively with its SMILE trampolines, introducing
negligible overhead to normal executions (e.g., additional
jump). By combining SMILE trampolines with its runtime
fault handling mechanisms, Chimera achieves both correct-
ness and high performance for all rewritten binaries.
Chimera’s requirements. Chimera is designed for RISC-V
ISAX processors capable of running Linux; its principles are
general to other RISC architectures. CHBP’s SMILE trampoline
(§4.2) leverages the illegal instruction encoding and the gp
register in RISC-V. Chimera needs kernel modifications to
implement its runtime mechanisms (§4.3).

• The gp register. In the SMILE trampoline, the register that
holds the target address must be restorable after being over-
written; moreover, if the trampoline is partially executed, the
register’s original value must point into data segmentation
and thus trigger a deterministic fault (§4.2). Most general reg-
isters cannot meet these two requirements because their run-
time values cannot be determined statically during the rewrit-
ing. The gp register in RISC-V satisfies this requirement [53].

Under the RISC-V ABI, gp is designed to reduce code size
by curtailing frequent data accesses from two instructions
to one instruction. Specifically, gp points to a fixed data-
segment address, allowing load/store address to be calculated
from gp. This ensures that gp’s value is calculated at compile
time and is read-only, allowing the SMILE trampoline to
recover gp’s value in target instructions (§4.2).
Besides RISC-V, the SMILE trampoline can also use “gp-

like” register in other ISAs (e.g., MIPS’s $28 register and
ARM’s r9 register under certain ABIs). For ISAs without
such a register, we can construct the SMILE trampoline with
a general register storing a data pointer (§4.2), though this
may increase the reliance on trap-based trampolines.
• Illegal instruction. To support compressed extension, the
SMILE trampoline uses two types of illegal instruction encod-
ing to trigger illegal instruction faults (§4.2). The first is an un-
supported instruction prefix. RISC-V reserves a large encod-
ing space for future extension instructions longer than four
bytes, whose lower encoding is all “11111”. These extension
instructions will not be enabled before the space is used up,
because longer instructions induce power consumption and
cache problems [53]. The second is a reserved compressed
instruction. Because there are 32 reserved instructions in the
compressed extension that can be used, which are unlikely
to be exhausted in the future, SMILE can use one of them.
• Kernel modifications. Because Chimera needs to catch and
recover deterministic faults at runtime (e.g., segmentation
faults) and support task scheduling across heterogeneous
ISAX cores, it requires modifications to the kernel’s fault-
handling and migration components.

Furthermore, even if Chimera can leverage the properties
of ABI to guarantee that gp can be restored correctly, a signal
delivered while the gp is temporarily overwritten by the
SMILE trampoline still causes the user-space signal handlers
to observe the incorrect gp value [53]. Therefore, Chimera
requires kernel modifications to ensure compatibility with
the existing signal-handling mechanism (§4.3).

3.4 Chimera’s Workflow Overview
Chimera’s workflow comprises the static binary rewriting
which prepares rewritten binaries for ISAX cores, and run-
time mechanisms which correctly and transparently execute
tasks on ISAX cores.
Chimera’s static binary rewriting. Given an original bi-
nary, Chimera uses CHBP to prepare a rewritten binary for
each heterogeneous core by upgrade and downgrade. Instruc-

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jiatai et al.

Base ISA

ISA ext1

Binaries

Core

Task

Scheduling

Processor 1 Processor 2 Processor 3

Error

Handling

Static Binary

Rewriting

Runtime
Mechanisms

Det. Error Recover

Migrate

… .text… .text… .text other sec. target inst.

… .text other sec.

target inst.

.text .text

source inst.

①Target Inst. Generation

②Trampoline Patching

(a)

Rewritten Binaries

Inst. 1 (4B) Inst. 2 (4B)

Input

SMILE trampoline

Deterministic

 fault

Trampoline Placement

Redirect

ISA ext2

Control flow
Det. fault

Source ISASource ISA

Trampoline

Processor

Source inst.ISAX Processors
Output

Original Binary

(b) (c)

TCG IR
 Module of Chimera

CHBP
Output

Input

Trampoline

Placement

P1

P1

Correct and High-Perf. Binary Patching

auipc gp imm jalr gp, gp

Figure 3. The architecture of Chimera. The static binary rewriting prepares the rewritten binaries for ISAX cores. The runtime
mechanisms schedule tasks among ISAX processors and handles deterministic faults raised by erroneous executions.

tion downgrade translates unsupported extension instruc-
tions into semantically equivalent base instructions, while
instruction upgrade optimizes base instructions to more ef-
ficient extension instructions. CHBP prepares a rewritten bi-
nary in two steps (Figure 3b).
• Step 1: target instruction generation. Depending on ISA
extensions the core supports, CHBP first scans the original
binary to identify all instructions that need binary rewrit-
ing (upgrade or downgrade). We refer to these instructions
as source instructions and the corresponding translated in-
structions as target instructions. The target instructions pre-
serve the semantics of source instructions and use only sup-
ported extensions. CHBP statically translates source instruc-
tions, generating both target instructions and necessary in-
structions to use/simulate additional registers (§4.1).
• Step 2: trampoline patching. CHBP creates a copy of the orig-
inal binary and patches the copy by replacing source instruc-
tions with trampolines targeting the corresponding target in-
structions (§4.2). During patching, it is challenging to achieve
both correctness and high performance (§3.2). Chimera tack-
les this challenge with its novel SMILE trampoline.

The SMILE trampoline passively triggers determin-
istic faults on erroneous jumps at runtime without sac-
rificing the normal execution performance.We design
the trampoline in two steps: First, we place RISC-V’s vanilla
multiple-inst long-distance trampoline by overwriting the
source instruction and its adjacent instructions (inst 1 and 2
in Figure 3c), allowing erroneous executions targeting these
original instructions to partially execute the trampoline (e.g.,
jump to P1 and execute only the jalr instruction). Second, we
ensure that such partial execution triggers a deterministic
fault. In Figure 3c, partially executing the SMILE trampoline
will use the unmodified gp register as the jump target. Since
gp points to the non-executable data segment, this results in
a deterministic segmentation fault.
Chimera’s runtimemechanisms. Chimera’s runtime loads
rewritten binaries, transparently schedules program tasks
among ISAX cores, and handles deterministic faults triggered

in only erroneous executions (§4.3).
Overall, Chimera achieves correct and high-performance

heterogeneous computing via binary rewriting. Previous
studies [20, 26, 49] ensure correctness by introducing sub-
stantial traps or proactive fault checks, incurring about 30.7%
performance overhead [20]. Chimera passively handles run-
time faults that actually occur, significantly reducing the in-
vocation frequency of the fault-handling mechanism. This is
achieved by our novel SMILE trampoline which guarantees
that any erroneous execution triggers a deterministic recov-
erable fault. The heavy fault-handling is restricted to rare er-
roneous executions, keeping normal executions largely unaf-
fected, and incurring only a 5.3% overhead due to trampoline-
based control flow redirection (§2.2).

4 Protocol Design
4.1 Target Instructions Generation
Chimera recursively disassembles a binary using IDA Pro [3]
to ensure the recognized instructions are correct. However,
it does not ensure completeness, meaning some instruc-
tions may remain unrecognized. If an unrecognized exten-
sion instruction is executed on an unsupported core, it trig-
gers an illegal instruction fault. Chimera detects such faults
and rewrites the unrecognized instructions at runtime (§4.3).
Given source instructions, Chimera’s CHBP produces corre-
sponding target instructions consisting of (1) computation
instructions and (2) register manipulation instructions. We
leverage translation templates in Qemu TCG [6] to produce
computation instructions, which may require additional reg-
isters beyond those used in source instructions due to two
types of register mismatches.
Use extra base registers. A batch processing extension in-
struction can be translated into a sequence of base instruc-
tions requiring additional base registers to store intermediate
results. For example, the RVB extension instruction sh1add
a0, a1, a2 (shift left by one and add), can be translated into two
base instructions: slli a3, a2, 1, which shifts a2 left by one and

Chimera : ISAX Heterogeneous Computing via Binary Rewriting EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Source inst.
Tramp. inst.
Neighbor inst.

Erro. exec.

4BSpace 1 4B

P1

4B2B

4B 2B 2 or 4B

2B

2B

2B

2B

2B 2 or 4B

4B

auipc gp, imm nop
P2
 P1
 P3

jalr gp, imm(gp)

(a)

(b)

auipc gp, imm jalr gp, gp

Space 1

2 or 4B

SMILE

Trampoline

Space 2

Space 3

Space 4

SMILE

Trampoline

Figure 4. Trampoline placement of Chimera. A space con-
tains a source instruction and its adjacent instructions. Our
SMILE trampoline overwrites instructions in the space. For a
space larger than 8 bytes, we insert an extra 2-byte nop. All er-
roneous potential jumps falling within the trampoline trigger
a deterministic fault (§4.2) and are handled at runtime (§4.3).

saves the result to a3, and add a0, a3, a2, which adds a3 and a2,
saving the result to a0. Here, register a3 temporarily holds the
shifted result and overwrites its previous value. For correct-
ness, we insert stack manipulation instructions to save and
restore a3 in the stack around the computation. When mul-
tiple registers are involved, their saves/restores are ordered
in a first-in, last-out manner to ensure correct restorations.
Simulate unsupported extension registers. Source in-
structions may use extension-specific registers whose
lengths are larger than 64-bit base registers (e.g., the 256-bit
vector registers in the RISC-V V extension [8]). These reg-
isters preserve the computation context and must be accu-
rately simulated by CHBP; e.g., an output vector register of a
vadd may serve as input to the next vadd. To preserve this
context on cores without the extension, we simulate exten-
sion registers using a dedicated readable/writable data sec-
tion in the rewritten binary. Each simulated register maps
to a reserved memory region. During translation, register
accesses are replaced by memory accesses to this region, en-
suring consistent behavior across heterogeneous cores.

4.2 Trampoline Patching
CHBP leverages the special register gp to construct the SMILE
trampoline, ensuring that any erroneous jump partially exe-
cuting the trampoline triggers a deterministic fault.
Trampoline construction. Chimera extends RISC-V’s
vanilla trampoline to construct a SMILE trampoline that trig-
gers deterministic faults on partial executions.
• RISC-V’s vanilla multiple-inst trampoline. The vanilla
multiple-inst trampoline has±2GB pc-relative jumping range.
The trampoline contains two 4-byte instructions, an auipc
and a jalr. The first instruction sets the target address based
on pc, and the second one adds an offset to the target address
and then jumps to it. Specifically, “auipc, 𝑟𝑑1, imm” sets the

lui a0, target_highOriginal inst. lw a1, target_low(a0)

P1

auipc a0, imm jalr a0, a0SMILE

Trampoline

Tramp. inst.
Neighbor inst.

Erro. exec.

Figure 5. The SMILE trampoline using a general register
storing a data pointer. Erroneous executions (P1) will trigger
deterministic segmentation faults, as the unmodified a0 still
points to the data segment.

target address by adding an immediate number to the value
of pc (i.e., the address of auipc). The immediate number’s up-
per 20 bits are imm and lower 12 bits are zero. The target ad-
dress is written in 𝑟𝑑1; “jalr 𝑟𝑑2, imm(𝑟𝑑1)” reads the address
in 𝑟𝑑1, adds a sign-extended immediate number imm, and
then jumps to the resulting target address. After the jump,
jalr writes pc + 4 to its 𝑟𝑑2 register as the return address.
• Chimera’s SMILE trampoline. As shown in Figure 4a, a
SMILE trampoline differs from the vanilla one in two aspects.
First, we replace 𝑟𝑑1 with gp to store the target address. As
the unmodified value stored in gp points to the data seg-
ment; therefore, erroneous executions that only execute jalr
will jump to the data segment and attempt to execute an in-
struction from there. Such an unsafe behavior is forbidden
by modern operating systems. The OS sets the data segment
as non-executable, and any attempt to execute code from it
triggers a segmentation fault. Second, because the unmodi-
fied value of gp can be determined statically, we use gp (in
place of 𝑟𝑑2) to hold the return address. Once the jump com-
pletes, we restore gp’s original value (Figure 6), ensuring
that overwriting gp doesn’t compromise program semantics.
• SMILE trampoline using general register.We can also con-
struct the SMILE trampoline with a general register storing
a data pointer when the ISA lacks a “gp-like” register. As
shown in Figure 5, the original inst. is a general memory-
accessing sequence to load data from the static target ad-
dress target. The lui a0, target_high sets the higher bits of
target (target_high) in the general register a0. The lw a1, tar-
get_low(a0) calculates target by adding the lower bits of target
(target_low) to a0 and loads data from target to a1. We replace
this sequence with the SMILE trampoline in Figure 5. After re-
placement, normal executions correctly execute the trampo-
line and restore a0 by executing the lui in target instructions;
erroneous executions (P1) that partially execute the tram-
poline (only jalr a0, a0) trigger deterministic segmentation
faults, as the unmodified a0 still points to the data segment.
To construct such a trampoline, we need to identify the

memory-accessing sequence preceding the source instruc-
tion in the same basic block, replace it with our SMILE tram-
poline, and copy intervening instructions into target instruc-
tions. Since not all source instructions can find such se-
quences, we must use a trap-based trampoline for them.
Trampoline placement. To avoid shifting subsequent in-
structions, Chimera places a SMILE trampoline by over-
writing the source instruction in place. Since an 8-byte

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jiatai et al.

(a) Downgrade inst. 1

(b) Upgrade inst. 1~3

①

②

P1

Copied inst.

Target Instructions

Fault handlingTranslateCopy Det. FaultControl flow

Source inst. 1
Original inst. 2
 Original inst. 3 Inst. 3Translated instructions

Copied inst. 2
Vanilla trampoline(a0)

SMILE jalr
SMILE auipc

Original Binary Rewritten Binary

Error handling

③

④
⑤

①
P1

Target Instructions
Source inst. 1
Source inst. 2
 Source inst. 3

......

Inst. 3

......

Translated instructions

Copied inst. 2
Vanilla trampoline(a0)

SMILE jalr
SMILE auipc

Original Binary Rewritten Binary

Error handling ④
⑤

 Original inst. 4 Inst. 4
Vanilla trampoline(a0)

......

 Original inst. 4

......

Inst. 4

②

③Restoring gp

Restoring gp

Figure 6. Chimera translates source instructions (1○) and
copies their neighbors (2○). After executing the SMILE tram-
poline, a normal execution (3○) first restores the value of gp
that was overwritten by SMILE trampoline; then executes
translated instructions and finally executes copied instruc-
tions (a) or skips copied instructions (b). For an erroneous
execution (P1), Chimera determines its fault address (4○) and
redirects it to the copied neighbor (5○).

SMILE trampoline is longer than a 4-byte source instruction,
Chimera additionally overwrites the succeeding adjacent in-
struction of the source instruction (referred to as “neighbor”).

For correctness, Chimera copies the overwritten neighbor
into the target instructions. In Figure 6a, suppose the trans-
lated instructions downgrade source inst. 1. Chimera places
a copy of the neighbor (copied inst. 2) after the translated in-
structions, followed by a trampoline that jumps back to inst.
3 in the rewritten binary. In normal executions, the neighbor
executes after the translated instructions. In erroneous ex-
ecutions that jump to P1, Chimera’s runtime redirects con-
trol flow to the neighbor (§4.3). If the target instructions up-
grade a sequence of source instructions (e.g., inst. 1 ∼ 3 in
Figure 6b), CHBP also copies inst. 2 into the target instruc-
tions, but inserts another trampoline between the translated
instructions and the copied neighbor. This ensures that nor-
mal executions skip the copied inst. 2, while erroneous exe-
cutions can still be safely redirected to it.

Additionally, to enhance performance, CHBP copies a series
of target instructions (along with their intervening instruc-
tions), whose source instructions belong to the same basic
block, into the first source instruction’s target instructions, al-
lowing the series of target instructions to be executed via one
trampoline. All original trampolines within the basic block
are still preserved to handle external jumps into the block.
This optimization is widely used in prior works [26, 46].
Challenge 1: instruction compression. Since the com-
pression extension is widely enabled on ISAX processors
(Arm and RISC-V), both a source instruction and its neighbor
can be 2-byte. Overwriting 2-byte instructions introduces

Illegal instruction fault (a)

(b)

000

auipc gp imm

0 6 16
jalr immgp gp

... 0 0 0 1 1 0 0 0 x x 1 x x x 1 1 1 0 0 1

20 31

... x x x x 1 1 1 1 1 x x x x x x x x x x x

0 6 16 20 31

Illegal instruction fault

Det. faultTrampoline

000jalr immrd rs

auipc rd imm

Inst. encoding

12

12

Figure 7. Trampoline placement and encoding.

more potential jump targets in the middle of trampoline in-
structions (e.g., P2 and P3 in Figure 4b). It is challenging to
trigger deterministic faults for the extra jump targets.

Chimera tackles this challenge by meticulously arrang-
ing the target addresses of trampoline instructions. P2 and
P3 only appear when the compression extension is enabled.
Since they point to bit 16 of both auipc and jalr, and the pro-
cessor parses instructions from lower to higher address, we
encode the higher 16 bits of the trampoline instructions as
a 2-byte illegal instruction, triggering an illegal instruction
fault. For auipc (Figure 7a), since it determines SMILE tram-
poline’s jump range (upper 20 bits in the target address), we
only confine bits 16-20 of auipc as “11111”, without reducing
the max jump range of our SMILE trampoline compared to
the vanilla trampoline. A SMILE trampoline obtains a ±2GB
jumping range by changing the higher bits 21-32 of auipc and
thus can jump out of the original code section. Furthermore,
auipc obtains the jump target by adding its own address with
its imm field as an offset. By setting the offset of each SMILE
trampoline, Chimera flexibly arranges all target instructions.
For jalr (Figure 7b), because the trampoline needs gp to

jump, which restrics bits 15-19 of jalr to “11000”, we encode
bits 16-31 of jalr to a 2-byte illegal instruction starting with
“1000”. This instruction is reserved by RISC-V (§3.2). The
encoding adds an immediate offset to the trampoline’s target
address, and we position target instructions accordingly.
Challenge 2: register selection. The second challenge is
the register selection for trampolines to jump back from tar-
get instructions to the original instructions. In ISAX architec-
tures (e.g., RISC-V), one trampoline requires an auipc, which
uses a register to store the target address. This register must
be a dead register whose current value is not used by any
subsequent instructions following control flows [46]. Over-
writing a dead register will not corrupt the semantics of sub-
sequent instructions. In Figure 8, each patching requires two
long-distance trampolines, the first is a SMILE trampoline
for jumping to the head of target instructions (entry position)
and the second can be a vanilla trampoline for jumping back
from the tail of target instructions (exit position).

Although SMILE trampolines can directly use gp for entry
position, we cannot use gp for exit position because the value

Chimera : ISAX Heterogeneous Computing via Binary Rewriting EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Copied inst.
SMILE trampoline

Translated code

lui a0, 0x10
add a1, a1, a2

Vanilla trampoline(a0)

add a2, a0, a2

Control flow

Original inst.

Exit register

Copy
a0

Entry position

Exit position

add a1, a1, a2
add a2, a0, a2

Restoring gp

Figure 8. Exit register selection. We copy subsequent in-
structions to be executed as target instructions (blue instruc-
tions) and thus alter the exit position, thereby increasing the
possibility of finding exit registers (red registers).

… .text other sec. target inst.

… .text data sec. target inst.MMView A

(selected)

MMView B

Core A

Rewritten

Binaries

… .text data sec. target inst.

… .text other sec. target inst.MMView A
MMView B

(selected)

Virtual address of the task

Virtual address of the task

Core B

①Load

②Migrate

Base ISA ISA ext1 BinariesISA ext2 Trampoline Task queue Core Task

Figure 9.MMViews of Chimera. The rewritten binary cor-
responding to each core is loaded into a distinct MMView.
When loading (1○) or migrating (2○) a task to a core, Chimera
switches to the corresponding MMView.

of gp must be restored before jumping out to the exit posi-
tion. CHBP sequentially employs two strategies for selecting
a dead register for the returning trampoline. First, CHBP uses
register liveness analysis to find a dead register for exit posi-
tion. However, the register liveness analysis techniques [46]
may fail to find a dead register for exit position due to the lim-
itations of binary data flow analysis [31, 46] and high register
pressure in compute-intensive tasks. Second, if the register
liveness analysis fails, CHBP adjusts the target instructions to
shift the exit position to a subsequent position that confirms
a dead register. Specifically, CHBP tries finding an instruction
having a dead register, by following the control flow after
the current exit position. Then, CHBP shifts the exit position to
the found instruction, copying instructions between the old
and new exit position into target instructions. If the found in-
struction lies in a different basic block than the current exit
position (for example, due to intervening branches or jumps),
Chimera merges the intervening basic blocks into the target
instructions so that control flow and semantics are preserved.
For example, in Figure 8, shifting the exit position to the

lui instruction helps select a0 as a dead register. Two extra
instructions are copied into target instructions. After execut-
ing target instructions, the program jumps to the new exit
position and overwrites the value of a0. While this strategy
finds dead registers in most cases (98.97% on average, see
§6.2), it may fail under high register pressure. CHBP then falls
back to a trap-based trampoline, following prior work [46].

4.3 Runtime Mechanism
Task scheduling. Unlike the original process model [40],
Chimera loads a program as a process with multiple address
spaces, each of which is instantiated from a rewritten binary
corresponding to an ISAX core. All address spaces share
the same data segmentation. Chimera achieves this process
model using MMViews, similar to prior works [54, 60].
An address space of a process consists of a list of Virtual

Memory Allocations (VMAs) [42] and a page directory that
maps those VMAs to physical page frames. VMA list and page
directory are stored together in a Memory map (MM) [41].
MMViews enable a process to maintain multiple address
spaces by creating several MMs for each process [54]; one
such MM is referred to as an MMView. The kernel chooses
which MMView to activate at runtime.

As shown in Figure 9, when a task is loaded on core A (1○),
Chimera loads each ISAX core’s rewritten binary into dif-
ferent MMViews; in each MMView, VMAs containing code
segmentation points to the physical page frames holding its
rewritten binary’s code, while VMAs containing data seg-
mentation share a common set of data physical page frames
across all MMViews. Then, the MMView corresponding to
the current core (MMView A for core A) is selected for execu-
tion, whereas other MMViews (e.g., MMView B) remain resi-
dent but inactive (the semi-transparent part). When the task
migrates to core B (2○), it switches to MMView B, which im-
plements the target instructions supported by core B, while
MMView A is retained in memory without execution.
Additionally, although rewritten binaries (§3) have the

same semantics, the target instructions pointed to by the
same pc value might not be semantically equivalent; If a mi-
gration occurs and the pc value is within the target instruc-
tions, Chimera delays the migration by inserting a probe [15]
at the exit position of the target instructions (in Figure 8).
Chimera migrates the task once the probe is triggered. With
the above mechanisms, Chimera can integrate with existing
schedulers (e.g., heterogeneous-ware CFS schedulers [39]).
Runtime fault handling. Deterministic faults in Chimera
arise from either unrecognized extension instructions or par-
tially executed SMILE trampolines. For each fault, Chimera
determines its address and root cause, then handles the fault
according to the fault-handling table of the rewritten binary.
• Fault-handling table construction. The fault-handling ta-
ble maps potential fault addresses (e.g., P1 in Figure 6a) to
their corresponding redirection targets (e.g., Copied inst. 2).
When placing a SMILE trampoline, CHBP copies neighboring
instructions to new locations and overwrites the originals.
CHBP records the original address, such as P1, P2, and P3 in
Figure 4b, as keys in the table, and maps each key to the new
address of the copied instruction (e.g., 2○ in Figure 6a).
• Determine the fault address. When a deterministic fault oc-
curs, Chimera determines its address based on its execution
context and fault type. For an illegal instruction fault, the

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jiatai et al.

Patch of ChimeraSignal occur.

SMILE jalr
SMILE auipc ……

Target InstructionsSMILE Trampoline

S1 Signal handler

Storing
context

Restoring

gp

Restoring

context

User

Space

Kernel

Space

Signal handlingControl flow

Kernel-side signal handling module

SIGNAL

①

②

③ ④

⑤

Figure 10. Adapt Chimera’s signal handling for compatibil-
ity with user-space handlers. Chimera restores the program’s
gp value before handling a signal, ensuring that a user-space
registered signal handler observes the correct gp value.

fault address is directly available in the pc register. For a seg-
mentation fault, the erroneous execution must have partially
executed the latter instruction (a jalr) of a SMILE trampo-
line, pointing the pc to the data segment. Chimera then de-
termines the fault address using the return address stored
in gp (§4.2): before jumping, the jalr stores the address of
its next instruction into the gp register. The fault address is
then computed by subtracting 4 from this return address.
• Redirection/Rewriting. Once identifying the fault address,
Chimera further discriminates its root cause with the fault-
handling table. If a fault address is an existing key, it points
to a neighbor instruction overwritten by a SMILE trampoline
(§4.2). Chimera then gets the value as the redirection target
and then resumes execution (5○ in Figure 6a). Otherwise,
it points to an unrecognized extension instruction (§4.1).
Chimera rewrites the instruction and resumes execution.
Signal handler. Chimera modifies the kernel’s signal han-
dling module to prevent user-defined handlers from overrid-
ing its fault handling mechanism. It gives priority to segmen-
tation faults and illegal-instruction faults (SIGSEGV and SIG-
ILL [43]) produced by CHBP: when such a signal occurs, the
kernel first checks whether it was generated by CHBP; if so,
the signal is routed to Chimera’s fault handling mechanism,
otherwise the kernel falls back to its standard handling (i.e.,
delivering the signal to the user-defined handler).
Moreover, if a signal is delivered at the moment the pro-

cess is executing the SMILE trampoline, which has overwrit-
ten the gp register (e.g., S1 in Figure 10), the user-space sig-
nal handler may observe an incorrect gp value and thus fail
to handle the signal. To maintain compatibility with exist-
ing signal-handling mechanisms, Chimera restores gp to its
original value (“Restoring gp” in Figure 10) after the kernel
stores context for signal delivery. This guarantees that the
signal handler observes the correct gp and executes correctly.

5 Analysis
5.1 Analysis of Chimera’s Correctness Guarantee
Claim 1. In Chimera, any erroneous execution that occurs in
the rewritten binary is guaranteed to trigger a deterministic
fault, which can always be detected at runtime.

Reasoning. After trampoline placement, all non-trampoline
instructions remain identical to those in the original binary,
ensuring correct execution for control flows that do not en-
counter trampolines. Control flows that execute trampolines
can be categorized into two types: (1) Completely executing
the trampoline and jumping to the corresponding target in-
structions can preserve correctness without triggering faults.
(2) Partially executing a trampoline due to an unexpected in-
direct jumpwill lead to an erroneous execution. In Chimera’s
SMILE trampolines (§4.2), all partially executed trampolines
are designed to induce immediate and deterministic faults
(an illegal instruction fault or a segmentation fault) without
executing any unintended instructions. Therefore, any erro-
neous executions in Chimera trigger deterministic faults. □

Claim 2. Chimera’s runtime fault handling mechanism can
correctly recover execution from any deterministic fault.

Reasoning. When a fault’s address and its execution context
are correctly identified, this fault can be solved if the fault
handling mechanism can redirect the execution context to
the correct address. Chimera achieves this by maintaining
a per-rewritten-binary fault-handling table to correct erro-
neous execution contexts. When overwriting a neighbor in-
struction (whose address is 𝑖), CHBP must have copied i to a
new address 𝑖′ in target instructions (§4.2). Since a potential
erroneous jump can originally target i, CHBP records 𝑖 and
the new 𝑖′ as a key-value pair into a table (§4.3), which then
acts as a runtime read-only data structure. Chimera corrects
any erroneous executions according to this table. □

Assertion 1 (Correctness of Chimera). Chimera guarantees
the correctness of all rewritten binaries by ensuring that any
erroneous execution triggers a deterministic fault, which is
detected and recovered at runtime.

Reasoning. By Claim 1, any erroneous execution triggers a
deterministic fault. By Claim 2, any deterministic fault can be
recovered by Chimera’s runtime fault handling mechanism.
Therefore, Chimera guarantees that each rewritten binary
maintains the same semantics as the original one. □

5.2 Analysis of Chimera’s Performance Guarantee
Assertion 2 (High Performance of Chimera). In normal exe-
cutions, Chimera’s fault-handling incurs only the overhead of
executing SMILE trampolines.

Reasoning. Normal executions can be divided into: (1) execu-
tion flows without executing trampolines, and (2) execution
flows that execute complete trampolines. The first type in-
curs no overhead. The second type incurs only the overhead
of executing our SMILE trampoline instead of the expensive
trap-based trampolines used in prior binary patching meth-
ods, with no additional costs for proactive fault checking (high
invoking frequency, see §6.2) when processing all indirect
jumps in existing binary regeneration methods (§2.2). □

Chimera : ISAX Heterogeneous Computing via Binary Rewriting EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

6 Evaluation
Setup. We deployed Chimera on two devices: a Banana Pi
BPI-F3 board [17] for general tests and a SOPHGO SG2042
board [47] for scalability tests (only §6.4). The Banana Pi BPI-
F3 board has a SpacemiT K1 8-core RISC-V 1.6GHz CPU [10],
supporting RV64GCV ISA with RVV v1.0 and 256-bit vector
registers. The board has 16GB RAM and a 128GB SD card.
SOPHGO SG2042 has a 64-core 2.0GHz CPU, equipped with
128GB DDR4 DRAM and a 128GB SSD.

Our heterogeneous computing evaluation involved two
types of cores: base cores supporting the RV64GC ISA, and
extension cores supporting the RV64GCV ISA with RISC-V
Vector (RVV) extensions included. We chose them because
the RV64GC ISA is the most widely supported ISA, and the
RVV extension is the most used optional RISC-V extension,
offering significant performance acceleration [9–11]. As the
cores in each board are homogeneous, to simulate ISAX
heterogeneous processor, we disabled the vector extension
on four cores (base cores), while retaining it on the other four
cores (extension cores). Similarly, for SG2042, we disabled
the vector extension on 32 cores and kept it on the others.
All experiments without specific mention of SG2042 were
conducted by default on Banana Pi.
Baselines.We compared Chimera with two kinds of base-
lines: (1) heterogeneous computing baselines, and (2) binary
rewriting baselines, since the performance of rewritten bina-
ries generated by CHBP determines the overall performance
of Chimera. We compared the heterogeneous computing
performance of Chimera with the following baselines: (1)
Fault and migrate (FAM [39]). Binaries with extension in-
structions could only run on extension cores, revealing the
performance of a heterogeneous computing system with-
out flexible scheduling (§2.1). (2) The compilation-based het-
erogeneous computing system MELF [60]. It compiled the
source code into two versions of binaries, a base ISA and an
extension ISA version, enabling them to run on both base
and extension cores. As Chimera rewrote the binaries with-
out the source code, MELF revealed the ideal performance
of Chimera. (3) We adapted Safer [49], the best performing
binary rewriting method in our environment, to compare
Chimera with the SOTA binary rewriting method (§2.2).
We compared the performance of binaries rewritten by

CHBP with the following baselines: (1) native compilation,
representing the performance under ideal conditions; (2) the
SOTA binary patching method, ARMore [26], as ARMore
doesn’t support jumping over 1MB, we used trap-based tram-
polines in such cases; (3) the SOTA binary regeneration
method, Safer [49]; (4) a strawman binary patching method
using trap-based trampolines to jump over 1MB. We used
this method to evaluate the performance improvement by
replacing trap-based trampolines with SMILE trampolines.
Workloads. We evaluated the performance and correctness
of Chimera and baselines under three representative work-

loads: (1) A widely used heterogeneous workload suite [32,
60], consisting of matrix and integer tasks with varying pro-
portions (e.g., 40% matrix and 60% integer, see §6.1). (2) SPEC
CPU2017 [2], a standard benchmark commonly used in prior
binary rewriting studies [26, 46, 49]. (3) Real-world applica-
tions, such as Vim [58] and OpenBLAS [23].

We focus on the following questions:
§6.1: How efficient is Chimera in heterogeneous computing?
§6.2: How efficient is CHBP’s binary rewriting methods?
§6.3: Can CHBP guarantee correctness on real applications?
§6.4: Can Chimera achieve high performance on real appli-
cations?

6.1 Heterogeneous Computing Performance
We evaluated the heterogeneous computing performance
of Chimera and the baselines on Banana Pi. Our workload
comprised two types of tasks: (1) Base tasks, comprised of
Fibonacci sequence calculations, which could not be acceler-
ated by RVV extension, had the same performance across all
cores. (2) Extension tasks, comprised ofmatrixmultiplication,
which could be accelerated by RVV extension, had different
performance across different cores. The workload contained
1000 mixed tasks. The computation times of different tasks
were in the ratio 2:2:2:1 for: (1) a base task on a base core,
(2) a base task on an extension core, (3) an extension task on
a base core, and (4) an extension task on an extension core.
By varying the proportion of tasks with RVV extension in-
structions (from 0% to 100%), we systematically assessed the
acceleration capabilities of both Chimera and the baselines.

We compiled the workload into two versions: the base ver-
sion, where both base and extension tasks use only RV64GC
instructions; and the extension version, where base tasks re-
main RV64GC (they cannot be accelerated by RVV) while ex-
tension tasks are optimized with RVV. These versions were
the input for Chimera and baselines, allowing us to evaluate
the performance of downgrading and upgrading (§3.4).

We used work-stealing, a widely used load-balancing pol-
icy [45], as our scheduling policy. It comprised two thread
pools: a base core pool and an extension core pool, each with
four workers. Workers with empty task queues stole tasks
from others in the same pool. Tasks with extension instruc-
tions were first allocated to the extension core pool, while
tasks without extension instructions were allocated to the
base core pool. If all workers in a thread pool were idle, they
stole tasks from the other pool and executed the correspond-
ing rewritten binary. In the FAM baseline, base core workers
migrated the stolen task back to the extension core workers
when meeting an unsupported extension instruction.
Result. The accumulated CPU time and end-to-end latency
for execution are shown in Figure 11.

For MELF, Safer, and Chimera, because extension tasks ex-
ecuted faster, the latency in both downgrading and upgrad-
ing decreased as the proportion of extension tasks increased.
For FAM, in downgrading, the latency initially decreased

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jiatai et al.

0% 20% 40% 60% 80% 100%0
12
24
36
48

CP
U

Ti
m

e
[s

]

(a) Extension Version - CPU Time
0% 20% 40% 60% 80% 100%

2
4
6
8

La
te

nc
y

[s
]

(b) Extension Version - End-to-End Latency

0% 20% 40% 60% 80% 100%
Extension Tasks Share (% of 1000 Jobs)

0
12
24
36
48

CP
U

Ti
m

e
[s

]

(c) Base Version - CPU Time

0% 20% 40% 60% 80% 100%
Extension Tasks Share (% of 1000 Jobs)

2
4
6
8

La
te

nc
y

[s
]

(d) Base Version - End-to-End Latency

FAM Safer MELF Chimera(ourwork) FAM Safer MELF Chimera(ourwork)

Figure 11. The CPU time and end-to-end latency of Chimera and baselines on an 8-core ISAX heterogeneous processor. For
MELF, Safer, and Chimera, latency decreased in both downgrading (Figure 11b) and upgrading (Figure 11d) as the proportion of
faster extension tasks increased. For FAM, in downgrading (Figure 11b), latency first decreased but then increased because base
cores will idle as the proportion of extension tasks increased; in upgrading (Figure 11d), FAM provided no vector acceleration (an
extension task without vector acceleration had the same execution time as a base task), so latency stayed essentially unchanged.

0% 20% 40% 60% 80% 100%
Extension Tasks Share (%)

0
20
40
60
80

100

Ac
ce

le
ra

te
d

Ta
sk

s(
%

)

(a) Extension Version

0% 20% 40% 60% 80% 100%
Extension Tasks Share (%)

(b) Base Version

FAM Safer MELF Chimera (our work)

Figure 12. The proportion of extension tasks accelerated by
vector extension.

because extension tasks ran faster. However, as the propor-
tion of extension tasks increased and extension instructions
could only be executed on the extension core, the base core
would idle after completing its base tasks; this resulted in sub-
optimal utilization of computational resources, and conse-
quently, latency gradually rose. In upgrading, FAM could not
accelerate tasks using the vector extension (an extension task
without acceleration had the same execution time as a base
task), so overall latency remained essentially unchanged.
Compared to MELF, the performance overhead of

Chimera in accumulated CPU time and end-to-end latency
was about 3.2% in downgrading and 5.3% in upgrading. These
results demonstrated that Chimera achieved almost the same
performance as compilation-based methods.
Compared to Safer, Chimera reduced computation time

by 10.1% and end-to-end latency by 12.5% on average in
downgrading and upgrading. Unlike Safer’s proactive fault
checks on all indirect jumps, Chimera’s passive fault han-
dling avoids overhead in normal executions.

MELF, Safer, and Chimera achieved up to 33.1% lower end-
to-end latency with up to 50.0% longer CPU time than FAM,
as they fully utilized base cores, resulting in more CPU time.
Breakdown. Figure 12 shows the proportion of extension
tasks accelerated by vector extension. The results indicated
that in heterogeneous systems such as MELF and Chimera,

approximately 30–40% of tasks containing extension instruc-
tions could be offloaded to base cores when extension tasks
comprised 100% of the workload, explaining why heteroge-
neous computing systems have lower end-to-end latency.
Overall, Chimera achieves high heterogeneous comput-

ing performance compared to the native-compilation-based
methods, demonstrating the efficiency of Chimera.

6.2 Binary Rewriting Efficiency
We compared Chimera’s binary rewriting performance
with the baselines on SPEC CPU2017 [2]. We compiled
SPEC CPU2017 with the -O3 optimization flag, RVV auto-
vectorization enabled [13], and compressed instruction sup-
port. We selected benchmarks with code sections larger than
1MB (§2.2), as smaller code sections (within ±1 MB) fall
within the jump range of single-instruction trampolines and
don’t require long-distance trampolines (§1).

For fairness, we adopted the commonly used empty patch-
ing method in binary rewriting evaluations [26, 46, 49].
Specifically, CHBP and baselines directly rewrote source in-
structions (RVV extension instructions) into target instruc-
tions, which replicated these extension instructions. This
method ensured that the performance overhead only origi-
nated from binary rewriting. Then we compared the perfor-
mance of binaries rewritten by CHBP and baselines.
Result. Figure 13 shows the performance degradation of
CHBP and baselines compared to the original binary. Com-
pared to the original binary, CHBP achieved a 5.3% perfor-
mance degradation on average, while Safer experienced a
15.6% degradation on average. The worst performance degra-
dation of CHBP was 9.6%, but the worst performance degra-
dation of Safer was 42.5%. This is because CHBP didn’t affect
normal executions, whereas Safer impacted normal execu-
tions by requiring checks on all indirect jumps (§2.2).
ARMore incurred a 171.5% performance degradation as

all its trampolines are trap-based. Compared to strawman bi-

Chimera : ISAX Heterogeneous Computing via Binary Rewriting EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

100%
300%
500%

perlbench_rgcc_r

omnetpp_r

xalancbmk_r

cactuBSSN_r
parest_r wrf_r

blender_r
cam4_r

imagick_r

perlbench_sgcc_s

omnetpp_s

xalancbmk_s

cactuBSSN_swrf_s
cam4_s

pop2_s

imagick_s
0%

20%
40%

Benchmark Runtime on SPEC CPU2017

Pe
rf.

 D
eg

ra
da

tio
n

(%
) Strawman binary patching Safer ARMore CHBP (our work)

Figure 13. The performance comparison between our work and the SOTA on SPEC CPU2017. The results demonstrated that
CHBP had the best performance among all baselines, showing the effectiveness of our passive fault handling mechanism.

Table 2. The count of correctness guarantee mechanism trig-
gering of CHBP and baselines. CHBP triggered the correctness
guarantee mechanism the least.

Fault Handling Trigger Count (109)
CHBP Safer ARMore Strawman
Real-world Application

Git 1.4×10-7 0.23 0.23 0.011
Vim 6.9 ×10-7 0.18 0.18 1.9×10-4
GIMP 2.7×10-6 0.44 0.32 0.44
CMake 9.7×10-6 4.12 4.12 1.74
CTest 7.4×10-6 3.98 3.98 2.16
Python 4.5×10-6 0.82 0.82 0.021
Libopenblas 2.4×10-6 4.1 4.1 1.2

SPEC CPU2017
cactuBSSN_r 2.5×10-7 6.0×10-3 6.0×10-3 3.0×10-4
cactuBSSN_s 2.7×10-7 5.3×10-3 5.3×10-3 2.0×10-4
cam4_r 1.3×10-5 1.02 1.07 10.66
cam4_s 4.5×10-4 4.51 4.57 40.21
gcc_r 4.2×10-4 16.87 16.87 0.77
gcc_s 7.3×10-4 35.55 35.57 1.124
xalancbmk_r 9.1×10-4 13.12 13.15 0.92
xalancbmk_s 9.2×10-4 13.12 13.15 0.88
imagick_r 3.3×10-4 16.07 16.10 0.57
imagick_s 1.4×10-4 5.34 5.51 0.36
omnetpp_r 3.9×10-4 23.29 23.29 1.26
omnetpp_s 3.9×10-4 23.29 23.34 1.34
perlbench_r 1.7×10-3 65.66 65.56 6.74
perlbench_s 1.7×10-3 65.23 64.56 6.74
pop2_s 7.0×10-5 2.10 2.17 20.16
wrf_r 1.5×10-5 1.12 1.11 5.11
wrf_s 8.4×10-4 6.31 6.21 30.35
blender_r 3.2×10-5 3.87 3.90 0.124

nary patching, CHBP improved performance by 60.2%, high-
lighting the importance of using the SMILE trampoline.
Breakdown. Table 2 shows the number of times additional
runtime mechanisms were triggered on benchmarks. For
our CHBP, it referred to the number of handled deterministic
faults. For strawman binary patching andARMore, it referred
to the number of traps. For Safer, it referred to the number
of pointer checks and corrections.

Table 3. The code size, the percentage of extension instruc-
tions in the binary, the number of exit trampolines, and cases
where the dead register couldn’t be found (our method
(§4.2)/traditional register liveness analysis [30, 46]) of
Chimera’s CHBP in real applications and SPEC CPU2017.

Code
Size (MB) Ext. Inst. Trampoline

Num.
Dead Reg.
Not Found

Real-world Application
Git 3.11 2.7% 3270 21/993
Vim 2.91 2.31% 2915 30/1308

CMake 7.60 3.32% 28128 78/9213
CTest 8.50 3.30% 30990 20/1129
Python 2.31 1.77% 4311 54/1482

Libopenblas 6.72 0.59% 3305 15/628
SPEC CPU2017

cactuBSSN_r 3.49 3.24% 13281 112/6024
cactuBSSN_s 3.49 3.24% 13293 112/6024

cam4_r 4.29 3.37% 17086 301/7846
cam4_s 4.47 3.27% 17449 401/7846
gcc_r 6.88 0.44% 5482 89/2080
gcc_s 6.88 0.44% 5482 89/2080

xalancbmk_r 2.91 1.36% 8798 107/3923
xalancbmk_s 2.91 1.36% 8798 107/3923
imagick_r 1.41 1.63% 2055 70/860
imagick_s 1.46 1.47% 2136 65/867
omnetpp_r 1.14 0.95% 2688 23/860
omnetpp_s 1.14 0.95% 2688 21/867
perlbench_r 1.52 0.58% 1521 12/583
perlbench_s 1.52 0.58% 1521 12/583

pop2_s 3.57 3.71% 15560 132/7722
wrf_r 16.79 3.21% 41408 103/11121
wrf_s 16.78 3.20% 41468 112/11098

blender_r 7.31 1.51% 15085 154/5395

Chimera triggered the fewest fault-handling events—only
0.005% on average of those in the baselines. This is because
prior works proactively trigger fault handling on all indi-
rect jumps, even in normal executions, resulting in frequent
runtime fault-handling events. In contrast, Chimera adopts
a passive strategy that invokes fault handling only in erro-
neous executions, which are rare in rewritten binaries. This
results in fewer fault-handling events and improved perfor-
mance. Overall, CHBP achieved better performance than ex-

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jiatai et al.

2 4 6 8
Threads

0.8
1.2
1.6
2.0

(a) OpenBLAS dgemm

2 4 6 8
Threads

0.4
0.8
1.2
1.6
2.0

(b) OpenBLAS sgemm

2 4 6 8
Threads

0.8
1.2
1.6
2.0

Ac
ce

le
ra

tio
n

Ra
tio

(c) OpenBlAS dgemv

2 4 6 8
Threads

0.8
1.2
1.6
2.0
2.4

(d) OpenBLAS sgemv

16 24 32 40 48 56 64
Threads

0.8
1.2
1.6
2.0

(e) OpenBLAS sgemm

FAM Ext. FAM Base MELF Chimera (our work)

Figure 14. Comparison of real-world application perfor-
mance. Figure 14(a-d) is a comparison of OpenBLAS. (e) is
the scalability evaluation. FAM Ext. is the baseline running
extension workloads on FAM and FAM Base runs base work-
loads. All acceleration ratios are relative to FAM Ext.

isting binary rewriting methods, especially in complex bina-
ries that are pervasive in heterogeneous computing.

6.3 Correctness of Chimera
We evaluated the correctness of Chimera using SPEC CPU
and real-world applications (Real-world Application in Ta-
ble 2 and 3) with large code sections compiled with the RVV
extension. These binaries were translated to the base ISA
and executed with their respective test suites.
Results. The results show that our method correctly trans-
lated all binary files and passed all test suites, proving that
our work can guarantee correctness.
Breakdown. In Table 3, extension instructions were a small
part of theworkload, somost instructions retained their origi-
nal performance after rewriting, which supported our binary
patching method. We also evaluated CHBP’s ability to iden-
tify dead registers. The results showed that traditional regis-
ter liveness analysis [46] failed to find dead registers in about
35.9% of cases. In contrast, our exit position shifting method
(§4.3) efficiently reduced this rate to just 1.1% (98.9% cases
could find dead registers). Overall, the results showed that
Chimera could guarantee the correctness of binary rewriting.

6.4 Real-World Applications
To evaluate Chimera’s performance in real-world applica-
tions, we used openBLAS, a widely utilized library that can
be accelerated with vector extensions. We selected four rep-
resentative matrix computations: dgemm, sgemm, dgemv,
and sgemv, and used Chimera to rewrite the vector versions
of these workloads. These workloads will be confined to a
fixed set of cores based on the number of threads; for exam-
ple, an 8-thread workload would be limited to four base cores
and four extension cores. To further evaluate scalability, we

evaluated sgemm on SG2042 under varying thread counts, as
its performance is sensitive to multi-threading.
Result. As shown in Figure 14, FAM Ext. is the baseline run-
ning extension workloads on FAM and FAM Base runs base
workloads. The two baselines could also represent, respec-
tively, the performance on ISAX hardware of (1) a binary that
contains extension instructions which are executed solely
on the extension cores and (2) a binary containing only base
instructions. The results show that the performance gap be-
tween Chimera and MELF was only 5.4%, and the accelera-
tion ratio compared to FAM Base was 32.1%. This indicates
the efficiency of Chimera in real-world applications.
FAM Ext. used only extension cores for vector compu-

tations and left the base cores idle. When the thread num-
ber increased, threads contended on extension cores. Conse-
quently, in most cases, FAM Ext. performs worse than FAM
Base (dgemm, dgemv, and sgemv). Matrix-to-matrix work-
loads (dgemm, sgemm) also experienced a decrease in over-
all speedup due to the growing thread synchronization over-
head. This was particularly evident in the scalability experi-
ments, where the speedup dropped by 60.2% when increasing
from 16 to 64 threads. Conversely, matrix-to-vector work-
loads (dgemv, sgemv) benefited from effective parallelization,
resulting in a stable and increasing overall speedup. Addition-
ally, as threads increased, synchronization between threads
became the primary performance bottleneck, which narrows
the performance gap between our method and MELF.
Overall, Chimera achieved similar performance to

compilation-based heterogeneous computing systems on
real-world applications, demonstrating the high performance
potential of Chimera. The small performance gap arises
mainly from the lower quality of instructions produced by bi-
nary translation compared to native compilation, which can
be addressed by integrating more advanced translation tools.

7 Conclusion
We present Chimera, a novel ISAX heterogeneous comput-
ing system achieving transparency, high performance, and
correctness via binary rewriting. Chimera passively confines
error handling to rare erroneous executions, enabling seam-
less task scheduling across heterogeneous cores with negli-
gible overhead, retaining program correctness while deliver-
ing near-native performance on real-world applications.

Acknowledgments
We would like to thank our shepherd, Wolfgang Schröder-
Preikschat, and the anonymous reviewers for their insightful
comments. This work is supported by National Key R&D
Program of China (No.2023YFB4503902).

References
[1] 2013. Documentation 2013; Arm Developer — developer.arm.com.

https://developer.arm.com/documentation/ddi0210/latest/
CACBCAAE. Accessed: 2025-03-25.

https://developer.arm.com/documentation/ddi0210/latest/CACBCAAE
https://developer.arm.com/documentation/ddi0210/latest/CACBCAAE

Chimera : ISAX Heterogeneous Computing via Binary Rewriting EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

[2] 2017. SPEC CPU 2017 — spec.org. https://www.spec.org/cpu2017/.
Accessed: 2025-03-25.

[3] 2023. IDA Pro. https://hex-rays.com/ida-pro. Accessed: 2023-10-21.
[4] 2024. GitHub - riscv/riscv-isa-manual: RISC-V Instruction Set Manual

— github.com. https://github.com/riscv/riscv-isa-manual/. Accessed:
2025-03-24.

[5] 2024. Home — opencv.org. https://opencv.org/. Accessed: 2025-05-06.
[6] 2024. QEMU — qemu.org. https://www.qemu.org/. Accessed: 2025-05-

06.
[7] 2024. RISC-V International — riscv.org. https://riscv.org/. Accessed:

2025-03-24.
[8] 2024. riscv-v-spec/v-spec.adoc at master · riscvarchive/riscv-v-spec

— github.com. https://github.com/riscvarchive/riscv-v-spec/blob/
master/v-spec.adoc. Accessed: 2025-03-25.

[9] 2024. SiFive - Leading the RISC-V Revolution — sifive.com. https:
//www.sifive.com/. Accessed: 2025-05-06.

[10] 2024. SpacemiT - RISC-V SoC - SPACEMIT — spacemit.com. https:
//www.spacemit.com/en/. Accessed: 2025-05-06.

[11] 2024. XuanTie — xrvm.com. https://www.xrvm.com/product/xuantie/.
Accessed: 2025-05-06.

[12] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin
Zhou, Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cris-
tiano Giuffrida, et al. 2020. BinRec: dynamic binary lifting and recom-
pilation. In Proceedings of the Fifteenth European Conference on Com-
puter Systems. 1–16.

[13] AMD. 2023. RISC-V Vector Extension. https://rocm.docs.amd.
com/projects/llvm-project/en/latest/LLVM/llvm/html/RISCV/
RISCVVectorExtension.html. Accessed: 2023-10-05.

[14] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and
Herbert Bos. 2016. An {In-Depth} analysis of disassembly on {Full-
Scale} x86/x64 binaries. In 25th USENIX security symposium (USENIX
security 16). 583–600.

[15] The Linux Kernel Authors. 2023. Uprobe Tracer. https://docs.kernel.
org/trace/uprobetracer.html Accessed: 2025-05-09.

[16] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory
Chirkov, Ang Li, Alexey Lavrov, Tri M Nguyen, Yaosheng Fu, Florian
Zaruba, et al. 2020. BYOC: a" bring your own core" framework for
heterogeneous-ISA research. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. 699–714.

[17] Banana Pi. 2023. Banana Pi: An Open Source Hardware Development
Platform. https://banana-pi.org/. Accessed: 2023-10-20.

[18] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony
Carno, Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017.
Breaking the boundaries in heterogeneous-ISA datacenters. ACM
SIGARCH Computer Architecture News 45, 1 (2017), 645–659.

[19] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jelesni-
anski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and Bi-
noy Ravindran. 2015. Popcorn: Bridging the programmability gap in
heterogeneous-ISA platforms. In Proceedings of the Tenth European
Conference on Computer Systems. 1–16.

[20] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al. 2018. Superset
Disassembly: Statically Rewriting x86 Binaries Without Heuristics.. In
NDSS.

[21] Bryan Buck and Jeffrey K Hollingsworth. 2000. An API for runtime
code patching. The International Journal of High Performance Comput-
ing Applications 14, 4 (2000), 317–329.

[22] Shenghsun Cho, Han Chen, Sergey Madaminov, Michael Ferdman,
and Peter Milder. 2020. Flick: Fast and lightweight isa-crossing call
for heterogeneous-ISA environments. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 187–
198.

[23] OpenBLAS Contributors. 2023. OpenBLAS: An optimized BLAS library.
http://www.openmathlib.org/OpenBLAS/. Accessed: 2023-10-13.

[24] Chinmay Deshpande, Fabian Parzefall, Felicitas Hetzelt, and Michael
Franz. 2024. Polynima: Practical hybrid recompilation for multi-
threaded binaries. In Proceedings of the Nineteenth European Confer-
ence on Computer Systems. 1126–1141.

[25] Matthew DeVuyst, Ashish Venkat, and Dean M Tullsen. 2012. Execu-
tion migration in a heterogeneous-ISA chip multiprocessor. In Proceed-
ings of the seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems. 261–272.

[26] Luca Di Bartolomeo, Hossein Moghaddas, and Mathias Payer. 2023.
{ARMore}: Pushing Love Back Into Binaries. In 32nd USENIX Security
Symposium (USENIX Security 23). 6311–6328.

[27] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
2020. Retrowrite: Statically instrumenting cots binaries for fuzzing
and sanitization. In 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 1497–1511.

[28] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary
rewriting without control flow recovery. In Proceedings of the 41st ACM
SIGPLAN conference on programming language design and implementa-
tion. 151–163.

[29] Gregory J Duck, Yuntong Zhang, and Roland HC Yap. 2022. Hardening
binaries against more memory errors. In Proceedings of the Seventeenth
European Conference on Computer Systems. 117–131.

[30] Dyninst Project. 2025. Dyninst: Binary Instrumentation and Analysis
Framework. https://github.com/dyninst/dyninst. GitHub repository,
accessed 2025-09-16.

[31] Antonio Flores-Montoya and Eric Schulte. 2020. Datalog disassembly.
In 29th USENIX Security Symposium (USENIX Security 20). 1075–1092.

[32] Giorgis Georgakoudis, Dimitrios S Nikolopoulos, Hans Vandieren-
donck, and Spyros Lalis. 2014. Fast dynamic binary rewriting for flex-
ible thread migration on shared-isa heterogeneous mpsocs. In 2014
International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV). IEEE, 156–163.

[33] Git Development Team. 2023. Git - Distributed Version Control System.
https://git-scm.com/. Online; accessed: 2023-05-06.

[34] Haegeon Jeong, Jeanseong Baik, and Kyungtae Kang. 2017. Functional
level hot-patching platform for executable and linkable format binaries.
In 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 489–494.

[35] Leslie A Johnson et al. 1998. DO-178B: Software considerations in
airborne systems and equipment certification. Crosstalk, October 199
(1998), 11–20.

[36] Hyungseok Kim, Soomin Kim, and Sang Kil Cha. 2025. Towards Sound
Reassembly of Modern x86-64 Binaries. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 1317–1333.

[37] Hyungseok Kim, Soomin Kim, Junoh Lee, Kangkook Jee, and Sang Kil
Cha. 2023. Reassembly is Hard: A Reflection on Challenges and Strate-
gies. In 32nd USENIX Security Symposium (USENIX Security 23). 1469–
1486.

[38] Akash Kothari, Abdul Rafae Noor, Muchen Xu, Hassam Uddin, Dhruv
Baronia, Stefanos Baziotis, Vikram Adve, Charith Mendis, and Sudipta
Sengupta. 2024. Hydride: A Retargetable and Extensible Synthesis-
based Compiler for Modern Hardware Architectures. In Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 514–529.

[39] Tong Li, Paul Brett, Rob Knauerhase, David Koufaty, Dheeraj Reddy,
and Scott Hahn. 2010. Operating system support for overlapping-ISA
heterogeneous multi-core architectures. InHPCA-16 2010 The Sixteenth
International Symposium on High-Performance Computer Architecture.
IEEE, 1–12.

[40] Linux Kernel Development Community. 2023. Linux Kernel Sched-
uler Documentation. https://docs.kernel.org/scheduler/index.html Ac-
cessed: 2023-10-07.

[41] Linux Kernel Development Community. 2024. Process Address Space.

https://www.spec.org/cpu2017/
https://hex-rays.com/ida-pro
https://github.com/riscv/riscv-isa-manual/
https://opencv.org/
https://www.qemu.org/
https://riscv.org/
https://github.com/riscvarchive/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscvarchive/riscv-v-spec/blob/master/v-spec.adoc
https://www.sifive.com/
https://www.sifive.com/
https://www.spacemit.com/en/
https://www.spacemit.com/en/
https://www.xrvm.com/product/xuantie/
https://rocm.docs.amd.com/projects/llvm-project/en/latest/LLVM/llvm/html/RISCV/RISCVVectorExtension.html
https://rocm.docs.amd.com/projects/llvm-project/en/latest/LLVM/llvm/html/RISCV/RISCVVectorExtension.html
https://rocm.docs.amd.com/projects/llvm-project/en/latest/LLVM/llvm/html/RISCV/RISCVVectorExtension.html
https://docs.kernel.org/trace/uprobetracer.html
https://docs.kernel.org/trace/uprobetracer.html
https://banana-pi.org/
http://www.openmathlib.org/OpenBLAS/
https://github.com/dyninst/dyninst
https://git-scm.com/
https://docs.kernel.org/scheduler/index.html

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Jiatai et al.

https://docs.kernel.org/mm/process_addrs.html Accessed: 2024-03-09.
[42] Linux Kernel Labs. 2024. Memory Mapping. https://linux-kernel-labs.

github.io/refs/heads/master/labs/memory_mapping.html Accessed:
2024-03-09.

[43] Linux man-pages project. 2024. signal(2) - overview of signals. https://
man7.org/linux/man-pages/man2/signal.2.html Accessed: 2024-03-09.

[44] Arm Ltd. 2024. big.LITTLE: Balancing Power Efficiency and Perfor-
mance — arm.com. https://www.arm.com/technologies/big-little. Ac-
cessed: 2025-03-25.

[45] Sarah Mcclure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy.
2022. Efficient scheduling policies for {Microsecond-Scale} tasks. In
19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22). 1–18.

[46] Xiaozhu Meng and Weijie Liu. 2021. Incremental CFG patching for
binary rewriting. In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems. 1020–1033.

[47] Milk-V. 2023. Pioneer Getting Started Guide. https://milkv.io/docs/
pioneer/getting-started/processor. Accessed: 2023-10-20.

[48] Julian Oppermann, Brindusa Mihaela Damian-Kosterhon, Florian
Meisel, Tammo Mürmann, Eyck Jentzsch, and Andreas Koch. 2024.
Longnail: High-Level Synthesis of Portable Custom Instruction Set Ex-
tensions for RISC-V Processors from Descriptions in the Open-Source
CoreDSL Language. In Proceedings of the 29th ACM International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems, Volume 3. 591–606.

[49] Soumyakant Priyadarshan, Huan Nguyen, Rohit Chouhan, and R Sekar.
2023. {SAFER}: Efficient and {Error-Tolerant} Binary Instrumenta-
tion. In 32nd USENIX Security Symposium (USENIX Security 23). 1451–
1468.

[50] Shipei Qu, Xiaolin Zhang, Chi Zhang, and Dawu Gu. 2024. Trapped
by Your WORDs:(Ab) using Processor Exception for Generic Binary
Instrumentation on Bare-metal Embedded Devices. In Proceedings of
the 61st ACM/IEEE Design Automation Conference. 1–6.

[51] Ashwin Ramaswamy, Sergey Bratus, Sean W Smith, and Michael E
Locasto. 2010. Katana: A hot patching framework for elf executables.
In 2010 International Conference on Availability, Reliability and Security.
IEEE, 507–512.

[52] RISC-V International. 2023. RISC-V Technical Specifications. https:
//lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-
V+Technical+Specifications#Profiles

[53] riscv-non-isa. 2024. GitHub - riscv-non-isa/riscv-elf-psabi-doc: A RISC-
V ELF psABI Document. https://github.com/riscv-non-isa/riscv-elf-
psabi-doc. Accessed: 2025-03-24.

[54] Florian Rommel, Lennart Glauer, Christian Dietrich, and Daniel
Lohmann. 2019. Wait-free code patching of multi-threaded processes.
In Proceedings of the 10th Workshop on Programming Languages and
Operating Systems. 23–29.

[55] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2028.
{LegoOS}: A disseminated, distributed {OS} for hardware resource
disaggregation. In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18). 69–87.

[56] ARINC Specification. 2015. 653,“Avionics Application Software Stan-
dard Interface.”.

[57] The LLVM Project. [n. d.]. Extending LLVM. https://releases.llvm.org/
3.8.0/docs/ExtendingLLVM.html Release 3.8.0.

[58] The Vim Project. 2023. Vim - Official Website. https://www.vim.org/.
Online; accessed: 2023-05-06.

[59] Linan Tian, Yangyang Shi, Liwei Chen, Yanqi Yang, and Gang Shi. 2022.
Gadgets splicing: dynamic binary transformation for precise rewriting.
In 2022 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 155–167.

[60] Dominik Töllner, Christian Dietrich, Illia Ostapyshyn, Florian Rommel,
and Daniel Lohmann. 2023. {MELF}: Multivariant Executables for a

Heterogeneous World. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). 257–273.

[61] Luca Valente, Yvan Tortorella, Mattia Sinigaglia, Giuseppe Tagliavini,
Alessandro Capotondi, Luca Benini, and Davide Rossi. 2023. HULK-V:
A heterogeneous ultra-low-power Linux capable RISC-V SoC. In 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 1–6.

[62] Ashish Venkat, Harsha Basavaraj, and Dean M Tullsen. 2019.
Composite-ISA cores: Enabling multi-ISA heterogeneity using a sin-
gle ISA. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 42–55.

[63] Ashish Venkat and Dean M Tullsen. 2014. Harnessing ISA diversity:
Design of a heterogeneous-ISA chip multiprocessor. ACM SIGARCH
Computer Architecture News 42, 3 (2014), 121–132.

[64] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar
Weippl. 2019. From hack to elaborate technique—a survey on binary
rewriting. ACM Computing Surveys (CSUR) 52, 3 (2019), 1–37.

[65] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Gra-
ham Patterson, Frank Spano, Yu JianWu, Junfeng Yang, and Vasileios P
Kemerlis. 2020. Egalito: Layout-agnostic binary recompilation. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 133–147.

[66] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer, Xuwei Liu, and
Xiangyu Zhang. 2021. Stochfuzz: Sound and cost-effective fuzzing of
stripped binaries by incremental and stochastic rewriting. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 659–676.

https://docs.kernel.org/mm/process_addrs.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/memory_mapping.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/memory_mapping.html
https://man7.org/linux/man-pages/man2/signal.2.html
https://man7.org/linux/man-pages/man2/signal.2.html
https://www.arm.com/technologies/big-little
https://milkv.io/docs/pioneer/getting-started/processor
https://milkv.io/docs/pioneer/getting-started/processor
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications#Profiles
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications#Profiles
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications#Profiles
https://github.com/riscv-non-isa/riscv-elf-psabi-doc
https://github.com/riscv-non-isa/riscv-elf-psabi-doc
https://releases.llvm.org/3.8.0/docs/ExtendingLLVM.html
https://releases.llvm.org/3.8.0/docs/ExtendingLLVM.html
https://www.vim.org/

Chimera : ISAX Heterogeneous Computing via Binary Rewriting EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

A Artifact Appendix
A.1 Abstract
Chimera can support high-performance and transparent
ISAX heterogeneous computing via binary rewriting. The
artifact of Chimera contains the source code repository of
Chimera and the scripts for reproducing the experiments.
To ease the efforts of evaluating the artifact, we provide a
machine with pre-installed hardware and software for the
reviewers to evaluate the artifact in a short time.

A.2 Description & Requirements
A.2.1 How to access. The artifact is publicly available at
https://github.com/Eurosys26p57/Chimera. The Zenodo link
is https://zenodo.org/records/17188849.

A.2.2 Hardware dependencies. Chimera now supports
running on only RISC-V hardware. We recommend using
Banana Pi BPI-F3 with at least 16GB RAM and a 50GB SD
card.

A.2.3 Software dependencies. We recommend using
Bianbu 2.0.4 or Ubuntu 22.04 and the specific toolchain for
Banana Pi (https://archive.spacemit.com/toolchain/). The
Python version needs to be 3.11.2+.

A.2.4 Benchmarks. Heterogeneous computing workload
with matrix and integer tasks and SPEC CPU2017 (§6).

A.3 Set-up
To ease the effort of evaluating the artifact, the hard-
ware/software dependencies on our server are set up, al-
lowing experiments to run directly. To deploy Chimera
in your own environment, you can deploy and use
Chimera following the README in our GitHub repository:
https://github.com/Eurosys26p57/Chimera.

A.4 Evaluation workflow
Our artifact evaluation consists of two experiments: E1 is in-
tended to verify the heterogeneous computing performance
of Chimera; E2 is intended to verify the performance of the
binary files rewritten via CHBP, the binary rewriting method
of Chimera.

A.4.1 Major Claims. Here we list all of our major claims
and their corresponding experiments below.

• C1: Chimera achieves similar performance compared
to compilation-based MELF (§6.1 and Figure 11). This
is supported by Experiment 1 (A.4.2).

• C2: CHBP, the binary patching method of Chimera,
achieves the lowest performance overhead among all
baselines (§6.2 and Figure 13). This is supported by
Experiment 2 (A.4.2).

A.4.2 Experiments. Our Experiment 1 (A.4.2) evaluates
the heterogeneous computing performance of Chimera to

prove C1. Our Experiment 2 (A.4.2) evaluates the perfor-
mance of rewritten binary via CHBP to prove C2. You can run
all experiments following the guidance in Chimera/Exp in
our repository.

• Experiment 1: End-to-end heterogeneous computing
performance. This experiment runs Chimera, MELF,
Safer and FAM with matrix and integer tasks and re-
ports each system’s end-to-end latency to prove C1.
This experiment corresponds to the evaluation de-
scribed in §6.1 and Figure 11.

• Experiment 2: Performance of rewritten binaries via
CHBP.This experiment runs SPEC CPU2017 rewritten
by CHBP, Safer, ARMore, and strawman patching and
reports the performance overhead of each rewritten
binary relative to the original to prove C2. This exper-
iment corresponds to the evaluation described in §6.2
and Figure 13.

https://github.com/Eurosys26p57/Chimera
https://zenodo.org/records/17188849
https://archive.spacemit.com/toolchain/
https://github.com/Eurosys26p57/Chimera

	Abstract
	1 Introduction
	2 Background
	2.1 ISAX Heterogeneous Computing
	2.2 Binary Rewriting

	3 Overview
	3.1 System Setup
	3.2 Chimera's Guarantee
	3.3 Analysis of Chimera's Performance Guarantee
	3.4 Chimera's Workflow Overview

	4 Protocol Design
	4.1 Target Instructions Generation
	4.2 Trampoline Patching
	4.3 Runtime Mechanism

	5 Analysis
	5.1 Analysis of Chimera's Correctness Guarantee
	5.2 Analysis of Chimera's Performance Guarantee

	6 Evaluation
	6.1 Heterogeneous Computing Performance
	6.2 Binary Rewriting Efficiency
	6.3 Correctness of Chimera
	6.4 Real-World Applications

	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

